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FOREWORD i

=3 This report was prepared under Task ZR0130901, IR-159. The work was an
s exploratory investigation to obtain an overview of propellant sensitivity to
deflagration to detonation transition (DDT). The present results and
conclusions on the DDT behavior of highly porous propellant models and

E propellants should be of interest in the areas of explosive sensitivity and ;
E 1 of propellant safety. . !
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INTRODUCTION

The present work was undertaken as an exploratory investigation of propellant
(i.e., composite explosive) sensitivity to undergoing a transition from burning
to detonation. The tendency of a propellant to exhibit a deflagration to
detonation transition (DDT) is becoming increasingly important as propellant
grains are made larger and the amount of their explosive component (e.g. HMX,
NC, NG) is increased. It was the purpose of this preliminary work to obtain
a broad overview, with large variations in composition, of this sensitivity
area in order to select a good experimental approach for its study.

It s generally recognized that the explosive behavior of propellants is
greatly enhanced by the presence of porosity. Hence the experimental work was
carried out at about 60-70% theoretical maximum density (TMD). A systematic
variation of the porosity or of the compositions was not attempted at this time.

The charges used consisted of a single propellant component which is also
a high explosive, nitrocellulose (NC), various mechanical binary mixtures
consisting of pairs to be found in commercial propellants and composite
explosives, and a single 4-component model. The commercial propellants
examined were a gun propellant (M-7, essentially a double base NC/NG
composition), a gas generator (Arcadene, plastic bonded HMX), and two rocket
propellants (FKM and VLU). FKM is a composite propellant with HMX added;
VLU is a composite modified doubie base (CMDB) propellant and s also referred
to as a cross-linked double base (XLDB) propellant.

EXPERIMENTAL
INSTRUMENTATION AND PROCEDURES

The ixgerimental setup and procedures have been described in detail ‘
elsewherels¢. The apparatus consists of a seamless steel tube with heavy end '
closures. The column length of the 0.35 g of 25/75 B/KNO3 ignitor is 6.3 mm; f
the length of the explosive column is 295.4 mm. Each pressed charge is
examined by X-ray prior to its instrumentation.

IBernecker, R. R. and Price, D., "Studies in the Transition from Deflagration
to Detonation in Granular Explosives," Combust. Flame, Vol. 22, 1974, 111-117,
119-129, and 161-170. See also NOLTR 72-207.

2Price, D. and Bernecker, R. R., "Sensitivity of Porous Explosives to Transitfon
from Deflagration to Detonation,”" Combust. Flame, Vol. 25, 1975, 91-100.
See also NOLTR 74-186.
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The DDT tube is instrumented with ionization probes (IP) and strain gages
(SG) to monitor ionization fronts and internal pressure, respectively. For
brevity, henceforth 1onizat10n probes will be referred to as probes; strain
gages, as gages. As before*, both custom-made and commercial probes are
used; distance-time (x-t) data from each are distinguished on the graphs.
The number of gage locations for monitoring internal pressure is generally
four or five per tube. The gage output is reported in strain (c)-or microstrain
(ue). In a static calibration of the tube, the gradient is 112 pe/kbar up to .
the elastic 1imit at 2.2 kbar. From 2 to 4.7 kbar, the microstrain increases
from 225 to 788.

One difference in procedure from that reported in Reference 1 is in the
determination of the predetonation column length, &. In the case of 91/9
RDX/wax, it was possible to use the intersection of the postconvective wave
front with the extrapolated detonation front to locate £ in the x-t plane;
the value was confirmed by that obtained from tube fragments. Here and, in
general for HE other than 91/9 RDX/wax, & is more reliably determined from
markings on the tube fragments; it is checked for consistency with the probe
and gage records in the x-t plane. In the present work, there were a few
shots for which tube fragments did not give an unambiguous value of £. These
are discussea in the Appendix and listed in Table Al. Unless otherwise
indicated, £ values were measured to * 3 mm.

Values for x were measured from the ignitor/explosive interface. Relative
time values were measured from the first discharge of the triggering IP; this
was generally the first probe.

MATERIALS

The ammonium perchlorate (AP) used was propellant grade and contained
0.2% tricalcium phosphate. It was ground at the Naval Ordnance Station
(Indian Head, MD). The lot used for this work had a weight mean particle size
of 8 um by micromerograph. The aluminum used was dichromated spherical powder
supplied by Valley Metallurgical Processing Company. It was designated H-5
and had an average particle size of 7 um by Fisher subsieve sizer. The wax
used was a refined, powdered, grade 1 yellow carnauba wax supplied by
Frank B. Ross Company; its average particle size was about 125 um. The
explosives were obtained commercially and satisfied the relevant military
specifications. RDX was Class A (6§ ~ 200u); HMX, Class E (3 ~ 15u). The
nitrocellulose (NC) was obtained through NOS, Indian Head, MD. It was an
01in Matheson fluid ball powder, Type A; it is essentially NC (§ ~ 40u)
which is nominally 12.6% nitrogen and contains about 1% 2-nitrodiphenylamine
stabilizer and 0.2-0.3% coating material. The gun propellant, a modified
M-7, was also obtained from NOS/IH, and shredded in our Laboratory (See
Appendix). The other three propellants, in shredded or powdered form, were
obtained from their respective manufacturers., A1l dry mixing was carried
out by the procedure of Reference 3.

3Pr1ce, D., Clairmont, A. R., Jr., and Erkman, J. 0., "Explosive Behavior of v
Aluminized Amonium Perchlorate," Combust. Flame, Vol. 20, 1973, 389-400.
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EXPERIMENTAL RESULTS AND DISCUSSION

A total of fifteen shots were made. Detailed tables, records for each
shot, and discussions of them appear in the Appendix. Table 1 contains a
summary of the results. As that tabulation shows, the charges have been
divided into four groups; that classification is roughly in accord with their
composition.

The first group consisted of binary AP mixtures that might be expected
in composite or CMDB propellants. Each of the three charges was 80% AP.
AP/wax was fired at 56.6 and 67.0% TMD; AP/A%, at 56.8% TMD. As Table 1
shows, all three failed to transit to detonation, but all three burned readily.
In fact, the velocities of the reactive fronts detected by IPs are much higher
than would be eﬁpected for a convective front at these high porosities.
Russian workers™ report that the breakdown of conductive burning and the
appearance of convective burning occurs for AP/bitumen mixtures at a much
lower critical pressure than it does for organic HE. This is probably also
the case for AP/wax, and, if so, the burning is already greatly accelerated
by the time of response of the IP 41 mm from the igniter. The same effect
was seen in AP/AL where the first IP was at x = 80 mm. In every case, the
velocity of the IP front was no longer acce%erating; it was either constant
or falling slightly. Other Russian workers® have reported that a stoichiometric
mixture of AP/polystyrene did exhibit DDT at 40 and 55% TMD, but not at 75%
TMD. Thus it is possible that the three AP mixes at larger porosities or
different compositions or both would show a transition. All three are
detonable under shock initiation.

The second charge group consisted of binary mixes of RDX/AR which might
appear in either a CMDB or a composite propellant to which RDX has been added.
The AL content was 9 or 20% and each composition was tested at 70 and 90% TMD;
all exhibited DDT. Again, as in the previous group, by the time the reaction
had reached the first IP, it was well advanced in the two charges with 9% A%.
RDX (10-20u) has a critical breakdown pressure about twice that of the AP
mixture® but the RDX used here with 6§ ~200u will have a lower breakdown
pressure. Moreover, its acceleration after the onset of the convective flame
front may be greater. When the AR content was increased to 20%, the transition
was sufficiently slowed to exhibit an IP front velocity of the magnitude of
that expected for a convective flame front at the given porosity. Increasing
the porosity also slowed down the DDT process. Hence the 80/20 RDX/AL at 70%
TMD produced records that can be completely resolved. These records (Fig. A7)
show a process completely in accord with the physical model Yf DDT describing
the transitional behavior of 91/9 RDX/wax at all compactions®. In other
words, following a convective flame front traveling at about 0.3 mm/us, a

4Be]yaev, A. F., Korotkov, A. I., and Sulimov, A. A., "Breakdown of Surface
Burning of Gas-Permeable Porous Systems," Combust., Explosion, and Shock
Waves, Vol. 2, No. 3, 1966, 47-58. ]

5
Korotkov, A. I., Sulimov, A. A., Qbmenin, A. V., Dubovitskii, V. F., and
Kurkin, A. I., "Transition from Combustion to Detonation in Porous Explosives," :
Combust., Explosion, and Shock Waves, Vol. 5, No. 3, 1969, 315-325. .
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compression front is formed near the ignition regiong it travels at 0.8 mm/us
(local sound speed) and marks the beginning of accelerated burning which
subsequently leads to the onset of detonation. In this case, there is a

. rearward traveling shock which originates near the region of onset.

The effect of adding A% to RDX was to modify the transitijonal processs
it increased % and Atp. This confirms the trends found with 90% TMD HMX/AR5
Earlier we found that the DDT results for pure RDX and pure HMX as well as
those for waxed HMX and waxed RDX ars quantitatively the same at comparable
%TMD, particle size, and composition/. Here, by comparison with aluminized
HMX6, we see the same equivalence in the aluminized mixtures. In addition,
we find little or no difference in detonation velocity D for 9 and 20% AL at
90% TMD (also true in HMX mixes)6, no significant difference in & at 70 and
90% TMD, but a marked decrease in Atp as the %TMD increases from 70 to 90%.

The third group of charges consisted of NC, binary NC mixtures, and a
fine HMX/AP mixture. These combinations would be expected in CMDB propellants. :
Records for the NC at 60 and 69% TMD (Figs. A8 and Al0) are very similar to £
that of 80/20 RDX/AL at 70% TMD without the rearward traveling shock; they ;
follow the same physical model. Again, increasing the ¥TMD did not change 7
the £ value but appreciably decreased the relative time to detcnation Aty
and decreased somewhat the time between formation of the first compression
front and the onset of detonation, At.. Addition of 20% A% to the NC resulted
B in a failure to transit. Hence A% hiﬁdered DDT in NC mixtures as well as
i in RDX mixes. On the other hand, addition of 15% AP to NC ennanced the 4
transitional process*, i.e., reduced both £ and Atp. (No shot was made on 1 3
: 154 HMX, but the values should be the same as those obtained for 15u RDX; i'
3 the latter values from Reference 7 are given for comparison in Table 1.) : 3

‘. The final group of charges consisted of a four-component model, a double-
base gun propellant, and a plastic bonded HMX used_as a gas generator. We
also have for comparison, interpolated data on FKME, a composite rocket
propellant, and VLU, a CMDB rocket prope11ant9.

H 6 :
¥ Price, D. and Clairmont, A. R., Jr., "Deflagration to Detonation Transition
Behavior of Aluminized HMX,"NSWC TR 79-119, Jun 1979.

- .

< -

7Price, D. and Bernecker, R. R., "DDT Behavior of Waxed Mixtures of RDX, HMX,
and Tetryl," NSWC/WOL TR 77-96, Oct 1977.

e R o R S

8Bernecker, R. R. and Price, D., unpublished data.

9Bernecker, R. R., Price, D., and Sandusky, H., "Burning to Detonation

. Transition in Porous Beds of High Energy Propellant," NSWC TR 79-351,
Nov 1979.
R *Note the very high IP front velocity here, again indicative of the ease of

onset of convective burning of AP mixtures.
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The model, which was 25/5/20/50 NC/AP/AL/HMX, was at 57.3% TMD; its firing
resulted in an unexpected phenomenon -- the random and erratic discharge
of the first five IPs. By the time the 6th-10th pins responded in their
normal sequence, the material was already detonating. In previous work, we
have encountered this experimental difficulty only in coarse tetryl at high
porosityl0. As the porosity was decreased in the tetryl, the problem dis-
appeared. It is highly probable that the problem would be less serious if
the model were examined at lower porosities. However, the problem is quite
evident at 57% TMD, and, as in the case of tetryl, must be attributed to low
pressure reaction producing products of such low electrical conductivity that
the IPs fail to respond to them.

Since the detonation velocity of this model was unknown, separate uncon-
fined charges of 15.9 mm dia. were shock initiated. D, measured by probes,
was

Shot po,g/cm3 %TMD D, mm/us
D-1009 1.096 T 57.1 4.84
D-1010 1.092 56.9 4.74

Since D in Shot 707 was about 4.9 mm/us, there is no doubt that this material
did achieve detonation in the transition experiment.

Al11 possible pairs of components in this model have been examined (at
least at a single ratio of contents) except NC/HMX, and these two materials
have been studied separately. The only combination in which the results
suggested a slight difficulty in IP response was NC/A%. Although the early
IPs did not show erratic discharge, the probe record was not triggered until
the third probe.

The random and erravic discharge of the early IPs suggested that different
probes were daischarged by different fronts instead of the customary sequential
discharge by a single (the first) ionic front. SG records which recorded
for only 500 usec showed very low pressures at all locations, but one oscillo-
scope set to record for 700 psec showed a rapid pressure rise at the 21 and
131 mm locations at about 580 us (See Fig. Al3b). These results suggest a
Tonger burning time at lower pressure and a much sharper subsequent pressure
rise than we have seen in most organic HE. The DDT mechanism might well be
aifferent from that of the proposed physical model.

The shredded gun propellant M-7 (67.5% TMD) showed a normal DDT record
(Fig. Al4) inaicating that its transitional mechanism was that of the proposed
physical model. Shredded Arcadene failed to transit and, at 70% TMC, produced
random discharge of IPs. No records are shown here for FKM or VLU, but the
latter, which contained NC and A% exhibited random and erratic discharge of the

10
Price, D., Bernecker, R. R., Erkman, J. 0., and Clairmont, A. R., Jr., "DDT
Behavior of Tetryl and Picric Acid," NSWC/WOL TR 76-31, May 1976,

6
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IPs. The three 70% TMD propellants which showed DDT had a range in & of
103-170 mm and in Atp of 76-247 us.

SUMMARY AND CONCLUSIONS

1. 80/20 AP/fuel does not exhibit DDT at 57-67% TMD in the present setup.
Fuels examined were wax and A%,

2. Addition of A% to RDX increases £ and At at both 70 and 90% TMD.
Results at 90% TMD essentially duplicate those of comparable HMX/AL compositions.
Decrease of porosity from 30 to 10% did not affect 2 of RDX/AL, but did decrease
Atp.

3. NC exhibited DDT at 60 and 69% TMD with the same % value at each
porosity; Atp at 69% TMD was distinctly less than Aty at the greater porosity.
Addition of Rz to NC hindered transition whereas addition of AP enhanced it.
Addition of AP to HMX, however, interfered with the transition.

4, The 4-component model and two different propellants exhibited random
and erratic discharge of IPs at 30-43% porosity. Additional instrumentation
is therefore necessary for studying some propellants at high porosity.

5. Propellants which showed a transition at 70% TMD in our apparatus,
had a range of 2 of 103-170 mm and in Atp of 76-247 us.

6. A1l transitions for which complete records were obtained seemed to
follow the mechanism of the original model.
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APPENDIX A
DETAILED DISCUSSION OF RECORDED DATA

In previous work we have presented results from each shot as a composite
illustration of distance-time and strain-time data. Here we shall follow the
same scheme insofar as possible. However, in contrast to earlier work, we
have examined here a large variety of 60-70% TMD charges,_ not a series with
regular composition or compaction changes such as RDX/waxl. As a result of
unpredictable variations in the DDT behavior of the present collection of
charges, a number of SG records were triggered too late to give any information
about predetonation conditions. Addition of aluminum to these porous charges
has increased the "hash" on SG records (some hash, caused by interactions
from discharge of the IPs, is always present.) When the SG record was illegible
or contributed but a single point, its trace was not reproduced. The single
point, which was read directly from the original polaroid record, was recorded
in the table of detailed data.

The established procedure for determining the predetonation column length
2 is from the wall markings; this is then checked for consistency with the IP
data in the distance-time plot. In the present results, there were three
cases in which £ could not be determined from fragment markings. In two cases,
the probe data supplied an acceptable value, but in one case (that marked with
an asterisk in Table Al) there was an ambiguity.

Table Al contains the measured and assigned % values. Table A2 shows
the rest of the detailed data for each shot.

Figs. Al-A3 show the x-t plots for three binary AP mixtures at 57-67% TMD.
None exhibit=d transition to detonation, and all burned. The fronts outlined
by the probe discharges (IP fronts) showed velocities of 0.6-0.8 mm/us, high
for convective fronts at this high porosity. (Fig. Al suggests that in the
case of 67% TMD 80/20 AP/wax the IP front might be caused by a pressure induced
reaction. In neither of the 57% TMD charges was a similar leading pressure
front detected.) Moreover, the velocity of the IP fronts in Figs. Al and A2
appears to increase with decreasing % TMD, a trend opposite to that shown
by the convective front in waxed RDX. Neither 20% AL nor 20% wax added to AP
was sufficient to effect DDT in our apparatus. The IP fronts were almost
identical in 80/20 AP/wax and 80/20 AP/AL, but the following compressive fronts
indicated greater reaction in the ignitor region for the former.

1

Bernecker, R. R. and Price, D., "Studies in the Transition from Deflagration
to Detonation in Granular Explosives," Combust. Flane, Vol. 22, 1974, 111-117,
119-129, and 161-170. See also NOLTR 72-202.
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The next four charges are aluminized RDX at 90 and 70% TMD; all exhitited
DDT. The lightly aluminized (9%) charges transited so rapidly that SG records
triggered by the IP at 41 mm, showed nothing (e.g., Fig. A4) or merely a
response to the detonation wave (e.g., Fig. A5). In Fig. A4 only dzia from
the last six probes (commercial) have been used to calculate the detonation
velocity. Although the WOL and commercial probes measure exactly.the same
detonation velocities, the former do respond slightly earlier than the latter.
In this particular case, it seems preferable not to mix the two sets of data.

Addition of 9% AL to RDX at 70% has increased & and Atp (for RDX, the
values are, respectively, 40-45 mm and 0-5 us’/); this may a?so be true at
90% TMD where the values of Table A2 or Table 1 _of the text can be compared
to extrapolated values for HMX (45 mm and 10 uss), but the difference in Atp
is too small to be significant. The values of % are, within experimental
e;ror, the same for the 70% and 90% TMD charges and so too are the values

of Atp.

In Fig. A6a, the assigned & value of 92 +10 mm is shown. This was a
case in which £ could not be determined from tube fragments, and its choice
from the probe data was not clear-cut. For example, the response of the
probe just before onset of detonation is frequently, although not always,
delayed. Consequently, we used the practically identical behavigr of HMX
and RDX, and assigned the value obtained in 90% TMD 80/20 HMX/A%P. AN
values are for Class A HE, i.e. § ~ 200u, and H-5 AL. The assumed equivalence
of RDX and HMX also seems justified by the close agreement of the DDT parameters:

H.E. 9-10% AR at 90% TMD
41
At
L, mm D us
RDX 59 7.1
HMX 56 5.6

20% A% at 90% TMD g
RDX (92) 25 s
HAX 92 23

It is evident that at 90% TMD increasing the AL content from 9 to 20% has
increased & and Atp.

6Price, D. and Clairmont, A. R., Jr., "Deflagration to Detonation Transition
Behavior of Aluminized HMX," NSWC TR 79-119, Jun 1979.

7Price, 0. and Bernecker, K. R., "DDT Behavior of Waxed Mixtures of RDX, HMX,
and Tetryl," WNSWC/WOL TR 77-96, Oct 1977.
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Fig. A7 displays the data for 70% TMD 80/20 RDX/A%L. This figure shows
the most complete data sets for this series of compositions. The initial IP
front at 0.26 mm/us is quite probably a convective wave. It is followed by
a compressive wave at 0.8 mm/us, a reasonable rate for 30% porous material,
and that, in turn, by the onset of detonation at a rate 20% less than the
ideal value for non-aluminized RDX. A shock traveling rearward from the
region of onset is also evident. Ip other words, this transition follows
exactly that proposed for waxed rRox!. It is probable that better time
resolution would also demonstrate the same mechanism in the other HE/AR
charges of this series.

As was the case for 91/9 RDX/AL, the initial charge compaction of the 80/20
RDX/A% had no experimentally significant effect on the value of 2. However, it
had a very large effect on the relative time Atp; it showed that relative time
to detonation decreases as %MD increases. The same direction of change was
indicated by the 91/9 RDX/A% although 2 us (from 9 to 7) is not a significant
difference (i.e., it is well within our experimental error).

Fig. A8 contains the data obtained on 59.9% TMD NC (Ball Powder). Fig. A8a
shows that this material clearly follows the original physical model. Both
the convective and postconvective fronts exhibit the appropriate velocity
values for the high porosity. They also intersect about 26 mm and 25 us before
the onset of detonation. Additional information is that the first SG (x=20.1 mm)
shows an excursion that might indicate a rearward traveling compression wave
from 20<x<67 mm or might indicate some disturbance of the gage output near the
ignitor region. The last SG (x=168.7 mm) was located near the onset of detonation
and responds to that event. In Fig. A8b, the record of the SG at 67 mm shows
a distorted plateau, starting at about 280 us. If a retonation or a shock
wave traveled from the onset of detonation to this SG at 4.81 mm/us (the
measured D), it would reach x=67 at 277 us. Hence the plateau might have
been caused by such a shock. The larger peak, which follows the plateau,
begins at 303 us. A compression wave from x=2=163 mm would have to travel at
2.1 mm/ s to arrive at that time. However, at both 277 and 303 us, the strain
at x=67 is well above that for the yield point of the tube. Hence both i
details may be artifacts of the tube's plastic deformation.

Fig. A9 portrays the records from a charge of approximately the same
porosity; it is NC to which 20% ~5: A% has been added. As Fig. A9a shows,
both a convective front and a postconvective front are formed shortly after
ignition. However, the pressure remains low (See Fig. A9b), and the strain
does not increase rapidly to exceed the yield point until about 500 us
(about 150 us after the end of the probe records). At that time, the tube
probably underwent a pressure burst. Thus addition of aluminum to NC decreases
its ability to undergo DDT. This was also the case for RDX above, where,
however, AL delayed but did not prevent DDT. Finally, note that the first
two probes did not respond to the early NC/A{ reaction. Recording was triggered
by the third probe.
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Because most of our exploratory work was done at 70% TMD, NC was
mechanically compacted to about this value. Fig. AlO displays the data which
show a very similar DDT behavior to that of 60% TMD. The details which have
changed are those to be expected with a more rapid transition to detonation:
front velocities are higher, intersection of the convective and postconvective
fronts earlier, and the relative times (Atp, Atg) have decreased.. On the
other hand, the predetonation column lengtR 2 has been unaffected by increasing
the compaction from 60 to 70% TMD.

The previous plot for NC can be compared to that of Fig. All for 85/15
NC/AP. Addition of 15% ammonium perchlorate has so decreased the time required
for transition that at x=41 mm, the IP front is already traveling at 1.8 mm/us,
and the onset of detonation occurs at 63 mm. Since the SGs, triggered by the
first IP, start recording late in the transitional process, only one excursion
appeared and that one was a response to the detonation. Thus addition of AP
to NC, decreased 2 and Atp, and had a negligible effect on D.

The effect of adding AP to a fine (8§ ~ 15u) HMX was explored with a 91/9
HMX/AP mixture (see Fig. Al12). It is not surprising that the reaction is
again rapid and that SGs recorded little data of value. By comparison with
results obtained with fine RDX7, it appears that addition of AP to HMX increases
both £ and Atp. In other words, AP decreases the tendency of HMX to undergo
DDT; it has a?so reduced D by 8.5% belTow its ideal value at this %TMD.

Fig. A13 displays the data from the shot on a 57.3% TMD mixture of NC/AP/A%/
HMX. In this material there was an early reaction causing random and erratic
discharge of the earlier IPs. As a result the oscilloscopes for the SGs were
triggered some time before the last half of the IP series which gave the D
value of Fig. Al3a. SGs on the oscilloscope with a sweep of about 470 us
showed essentially no pressure change as also did those of Fig. Al3b which fed
into an oscilloscope set for a longer sweep. Since thepressure did not change
for the first 470 us of recording, the plot of Fig. Al3b started at ~460 us.
The curves for the 20.8 mm and 130.7 mm locations cross, and indicate a rearward
traveling shock. From the time of the pressure excursions and the separation
distance, the velocity is 3.5 mm/us. If this shock originates at the time
and location of the onset of detonation (Fig. Al3a) and travels at this constant
velocity, then 541 us on Fig. Al13b would correspond to time zero on Fig. Al3a.
This is the only shot included in this report for which the SG and IP records
had different zero times.

There is no question that this model underwent a transition to detonation.
The wall markings and the IP data clearly show this. However, the tube damage
was much less than might be expected, less for instance than that for Shot 810
on NC at 59.9% TMD, A length of about 3.7 in. tube at the ignitor end was
intact after the shot with the mix. It is possible that the observed DDT .
was of the explosive components, (e.g., HMX and NC) at high porosity, rather
than the detonation of the entire mix as a composite explosive
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A modified M-7 gun propellant, 58.7/32.0/8.0/0.8/0.5 NC/NG/KP/EC/C, was
shredded by cutting thin slices with a razor. The shreds were compacted to
67.5% TMD in a DDT tube in which the charge was subsequently fired. Fig. Al4
shows the resultant data. As the figures show, this propellant follows the
usual path for DDT. Since it was pressed to nearly 70% TMD rather than the
60% TMD of the previous charge, it showed much more fracture damage of the

containing tube.
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TABLE Al
MEASURED AND ASSIGNED % VALUES

L Values, mm

Shot No. Material ¥TMD From x-t From wall Assigned

Plot Markings

805  80/20 AP/Wax 67.0
809 . 56.6
906 80/20 AP/AL 56.8
1012 91/9 RDX/AL 89.6 603 59,242 59:2
1109 " 7n.2  s7t3 54.1 5842
1118 80/20 RDX/AX 89.8  75%5 >59 92410
1203 80/20 " 70.4 85 87.1¢3 87+3
810  NC 59.9  165°3 163.3:3 163+3
905  80/20 NC/AL 57.0 - - F
11001 NC 69.4 165 16543 165:3
1008 85/15 NC/AP 69.8 6070 6322 63:2
1005  91/9 HMX(E)/AP 69.5 85 ¢ 54<1<181 8612
707 4C Model - 161:3 . 161¢3
816  M-7 17045 . 17025
1515 Arcadene - - F

*See text .
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FIGURE A1 DIST?NCE -TIME DATA FROM SHOT 805 ON 80/20 AP/WAX AT 67.0% TMD, A =1.10
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FIGURE A2 DIST, éNCE -TIME DATA FROM SHOT 809 ON 80/20 AP/WAX AT 56.6% TMD, 0, =0.93
g/cm®. (KEY OF FIGURE A1)
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b. STRAIN-TIME DATA (KEY OF FIGURE A7b)

FIGURE A9 DATA FROM SHOT 905 ON 80/20 NC/A{ AT 57.0% TMD, A, =0.98 g/cm3
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